三、回到数列本身根据推算找规律
回到数列本身推导时,要看数列的后项是不是它相邻的前几项的和(或差),或是前几项的和(或差)加上(减去)一个常数或一个简单的数列构成的。这样的数列常见于加减复合数列、加减乘除复合(摆动)数列,难度比较大,考生在复习备考时多做几道题、多总结,熟悉了其组合方式或内在的规律,此类数字推理题就不难解决。
例:38,24,62,12,74,28,( )
A. 74 B. 75 C. 80 D. 102
——『2009年广东省公务员录用考试真题』
【答案:D】题干中的数字有七项,因此可以考虑从长数列或分组数列方面入手解题。但无论两两分组还是取奇数项与偶数项单独考虑都无规律可循。观察前三项可以发现,38+24=62,可以看出本题具备和数列的特征;继续看后面数字,可以发现62+12=74,且只有奇数项的数字有此做和的关系。因此,我们可以总结出本题的规律为:相邻的奇数项与偶数项的和为下一个奇数项的值。由此规律我们可以推出( )=74+28=102
需要说明的是:近年来数字推理题的变化趋势是越来越难,需综合利用两个或者两个以上的规律才能得到答案。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间时再返回来解答这些难题。这不但节省了时间,保证了简单题目的得分率,而且解简单试题时的某些思路、技巧、方法会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度进行思考。此时,与其“卡”死在这里,不如抛开这道题先做其它的题目。做这些难题时,可以利用“试错法”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律
责任编辑:虫虫