大跨度预应力混凝土桥梁施工应力监测中的几个问题
来源:优易学  2011-12-22 14:59:27   【优易学:中国教育考试门户网】   资料下载   建筑书店

   一、前言
    近几年,我院承担了十余座大跨度预应力混凝土桥梁施工应力监测任务。有斜拉桥、连续梁及刚构等多种桥式。在完成合同规定任务的同时,为了提高测试质量还做了不少的试验和探讨。根据对混凝土桥梁施工应力的观测,发现目前还有些问题没有很好的解决,及时总结经验教训,不断地提高测试质量,是当前桥梁建设发展的需要。
    随着桥梁事业的发展,预应力混凝土桥梁得到广泛应用,不同桥式的预应力混凝土桥梁在不断兴建,跨度逐步加大,结构也向薄壁轻型发展,悬臂施工中不安全因素随之增大。为了避免安装应力失控,有更多的桥梁对施工进行监控,对施工应力测试也提出了更高的要求。现在施工应力测试技术远远跟不上桥梁工程发展的需要。
    本文在总结多年来大跨度预应力混凝土桥梁施工应力测试的基础上,针对当前测试存在的问题,谈谈提高测试精度、确保测试质量的具体方法。 
    二、提高测试质见的探讨
    混凝土为非匀质材料,除受力变形外还有多种因素同样引起变形。目前对混凝土应力直接测试尚无完善的方法,仍是通过应变量测再进行换算,由于多种变形的掺入,使得测试工作变得十分复杂。
    温度对桥梁结构影响很明显可分两个方面,一是结构随温度变化发生变形,即热胀冷缩;另外由日照等原因引起结构温差,温差对结构影响大,也很复杂。
    湿度对混凝土结构影响也比较明显,近来采用泵送混凝土,由于水和水泥用量的增多,于缩变形也随之变大。
    混凝土自身体积变化是由内部胶凝材料的水化作用引起的变形,对结构有影响,但不太明显。
    徐变是混凝土特性之一,在荷载不变情况下,变形在不断增加。它对结构受力影响明显,也很复杂。
    关于混凝土变形总起来可归纳为两类:一类是混凝土受力变形,包括荷载弹性变形、徐变变形及温差引起的变形;另一类为体积变形,是指混凝土温度变形、湿度变形及自身体积变形等。可用下式表示:
    ε总=ε受力+ε体积=(ε何载+ε徐变+ε温差)+(ε温+ε湿+ε自) 

    施工应力测试就是将观测部位在不同工况下由荷载引起弹性应变。荷载量测出来,用下式换算出应力
    σ荷=Eε荷载
    式中,E为弹性模量。
    而应变测值包括了上述两类变形。为了得到较准确的荷载应变,多年来一直研究如何把其他应变从测值中分离出来。 
    1.体积变形补偿方法的试验
    水工大坝的监测一直采用双壁筒式无应力计,它由双层铁皮筒和填在中间的软材料构成,见图1。它可以消除荷载引起的变形。测值仅是混凝土体积变形,用来补偿大坝混凝土体积变形。
    70年代在九江长江大桥的沉井试验中曾用这种无应力计。在沉井尚未下沉时经观测就发现无应力计的温度与应变计不一致。湿度相差更大,当井壁混凝土于缩达200~300微应变时,而无应力计只有数十个微应变,沉井下沉后,由于井壁浸水膨胀,差距才逐渐减小。
    据分析由于简内混凝土周围有铁皮和软材料包围。影响热传导和水分散发,使箱内外混凝土在温度和湿度方面都出现了差异。
    为了进一步验证还制作了混凝土试块,同时埋设工作应变计和无应力计。试块灌注后养生期间就发现二者逐渐产生了差别,随着龄期增长差别越来越大。此时的试块没有受力,应变计测值也应和无应力计一样都是体积变形,二者不一致,证明筒式无应力起不到补偿作用。后来还试用过尺寸不同的混凝土块,内设同一型号的应变计,作为补偿块。补偿块与结构上对应的混凝土同时灌注,同样养生,测试时将补偿块放在观测的部位,尽量保持同样的条件。但由于补偿块体积小,界面多,热传导及水分散发比较快,后来也发现补偿块内的温度和湿度与结构之间存在较大的差别。同样起不到良好的补偿作用。
    以上教训使我们认识到无应力计补偿效果好坏取决于在温度和湿度方面能否与工作应变计保持同步,为此我们将筒式无应力计改为半筒式,见图2。
    为了试验这种无应力计补偿效果,曾制作大型混凝土试块,里面埋设几种尺寸不同的半筒式无应力计及对应的工作应变计(DI-100),见图3。将试块放在露天和水下分别进行较长时间的观测,然后将试块放在压力机加载验证无应力计对荷载隔离效果。
    图4为试块中一种无应力计与应变计在日照下观测的"应变-时间曲和"温度一时间曲线"。图5是试块在水中观测的无应力计及应变计的"应变-时间曲线"和"温度-时间曲线"。图6是试块在压力机加载时的"应变-荷载曲线"。从观测曲线可以看出,尤应力计不论在日照下和水中,它与应变计在应变和温度方面基本上是同步的,隔离荷载效果也很好,试验证明半筒式无应力计有较好的补偿效果。 
    此后一直使用这种无应力计,据几座桥的实测数据看,补偿效果是令人满意的。
    有些桥梁在横向未设预应力,还可采用图7所示补偿形式,在垂直方向安装同样的应变计,其测值经过泊桑比的换算,同样可进行补偿。这种补偿形式安装方便,不需其他设备,从使用效果看也很好。
    上述两种补偿形式,要达到预期的补偿效果,还有几点应弓愧注意。一是要设法将补偿和工作的两个应变计埋设距混凝土表面同等,只有这样才能使两者在温度和湿度保持同步;二是无应力计和应变计应选择温度场相同或接近的位置进行埋设;三是工作和补偿的两个应变计必须同一型号、同批生产。如果两者主要参数相同或相近补偿效果会更好。
    2.减少温差及徐变影响的措施
    桥梁结构的温差多来自日照,气温骤降也能形成温差。根据观测,日照引起的梁顶与梁底温差可达17~19℃。它能使某些部位产生相当大的温度应力。也可能使施工中悬臂端产生较大的变位。具体与结构本身力学特性及周围约束有关。由于日照引起的温度场本身又是随机变量。所以温差给结构带来影响相当复杂。
    减少温差影响有效方法是早晨日出之前进行量测。日照形成的温差经过一夜基本上趋于平稳。只有封闭箱内外有温差,但影响不大。早晨不但是梁的各部位温差最小,而且全桥的各部分温差也最小。因此早晨日出之前进行量测是消除温差影响有效的方法。
    混凝土徐变变形受多种因素影响,比较复杂。其中徐变变形大小与加载龄期长短有关。减少徐变的影响,可采用加密量测次数,取每次加载前后相对值累计办法,有一定效果。 悬臂施工中每浇筑(或拼装)一个梁段需要一定时间,测试可将其中几个荷载变化比较大的工序选出来。如移挂篮、绑钢筋、浇混凝土、张拉预应力等,在这些工序进行前后分别进行量测,取前后差值叠加累积。这样虽然不可能将徐变影响完全分离出去,但总可以减少一部分误差。

[1] [2] 下一页

责任编辑:sealion1986

文章搜索:
 相关文章
热点资讯
热门课程培训