新扩建电厂设计规程(十五)
来源:优易学  2011-12-26 11:17:06   【优易学:中国教育考试门户网】   资料下载   建筑书店

 

6.6 汽机房布置 
6.6.1 对200MW以上大型机组,如条件合适,经技术经济比较合理,均可采用横向布置,不应受到限制。目前已运行的神头二电厂500MW机组,正在建设中的来宾电厂300MW机组,以及有些设计院设计的2000年燃煤示范电厂300MW机组,均采用了横向布置。 
直接空冷机组的空冷散热器(或称空冷凝汽器)由于散热面积大,组数多,一般都布置在汽机房A列柱外侧地面的平台上,沿主厂房纵向排列,占用沿主厂房的长度较长,故机组也应采用纵向顺序排列布置,以适应散热器的布置要求,同时也便于汽轮机排汽大管道的引出。 
6.6.2 随着汽轮机单机容量的增大,机组的运转层标高也随着提高,300MW机组的运转层标高已达12m。若仍采用岛式布置,则主厂房空间利用率低的缺点越来越明显;若采用大平台布置,可利用中间层作为厂用配电装置室,则建造大平台所增加的土建造价,可以从节省厂房总体积中得到补偿,且运转层上有足够的检修面积,使检修方便。当然,利用中间层布置厂用配电装置时,以采用干式变压器和无油式断路器为好。同时,汽轮机运转层用大平台布置后,对桥式起重机不能吊到的底层辅助设备,要增加必要的检修起吊设备。 
对于125MW及以下机组,因运转层标高较低,采用岛式布置空间利用率低的缺点已不明显,且可发扬岛式布置节省土建投资、零米层设备可用汽机房桥式起重机起吊等优点,故对125MW及以下机组建议采用岛式布置。 
规定采用大平台时,应考虑汽机房的自然通风、排热、排湿及起吊物件的要求。 
6.6.3 300MW及以上机组的汽动给水泵小汽轮机排汽入主凝汽器时,以采用向下引出接入主凝汽器为佳,此时,汽动给水泵宜布置在汽机房运转层上。 
另一种方案是将汽动给水泵布置在汽机房B列柱侧底层或除氧间底层,但应考虑检修时起吊小汽轮机的相应措施。 
在条件合适的情况下,如给水泵上方有足够的管道穿越空间和起吊空间等,给水泵也可采用零米以上的半高位布置,以方便给水泵油箱等辅助设施的安排。 
6.6.4 为了确保汽轮机油系统的运行安全,主油箱、油泵、冷油器等应远离高温管道。对于纵向布置的大容量机组,这些设备宜布置在汽机房零米层机头靠A列柱侧处,因为该处离高温管道较远。 
汽轮机油系统失火事故表明:汽轮机油系统必须设有防止火灾事故的各种措施。除应根据防火要求设置消防水源及其他灭火设备外,必须迅速将油排往适当的安全地点,但不应将油排放到敞开的沟道和下水道内,以防止火焰蔓延,扩大事故和污染环境。 
根据调查,如事故放油门位置设置不当,一旦油系统着火,将无法靠近、操作,影响及时处理。所以在布置事故放油门时,应考虑到该阀门能在安全方便的地点操作,并有两条人行通道可以到达。 
6.6.5 带混合式凝汽器的间接空冷系统中,循环水泵设在凝汽器出口的循环水系统上,循环水为在凝汽器工作压力下的饱和水,易于汽化;在凝汽器入口的循环水系统上装有回收能量并兼作调压的水轮机,水轮机至凝汽器的管道内为负压,为缩短管道、减少管道阻力和空气漏入机会,所以要求循环水泵和水轮机尽量靠近凝汽器布置。 
6.6.6 进、出凝结水除盐装置的凝结水管均为价格较贵的衬胶钢管,为节约投资与运行费用,规定凝结水除盐装置宜布置在主厂房内的适当位置。 
6.7 集中控制楼和单元控制室 
6.7.1 两机一控布置的缺点主要是施工对运行的影响,通过多年来电厂实践,证明这是可以解决的。“当条件合适”是指集中控制楼伸入除氧煤仓间内,需具备一定的条件,如每炉煤仓间的长度与锅炉的宽度基本一致,汽机房的长度大于除氧煤仓间的长度,否则从占地来说是不合理的。不设置集中控制楼时,单元(或集中) 控制室也可布置在其他的适当位置(如除氧煤仓间运转层)上。 
6.7.2 本条文对集中控制楼和单元控制室内的具体布置规定进行了简化,仅提出原则性要求。一般来说,当两机一控时,网络控制在单元控制室内,其面积不应超过350m2;网络控制不在单元控制室内,其面积不应超过300m2。集中控制楼单层的平面面积只能由单元控制室、电子设备间和为其服务的其他设施确定,不能为布置与控制室无关的设备和安排过多的生活设施而扩大。 
6.7.3 条文规定单元控制室的净空高度不小于3.2m,这是下限标准,但也没有必要采用过高的净空。 
为了防止发生火灾时蔓延,条文规定:“电缆夹层与主厂房相邻部分应封闭。” 
当单元控制室布置在除氧煤仓间合并框架内时,该处框架和除氧层楼板不应设结构缝,同时“单元控制室应设整体防水顶盖”,以提高单元控制室的安全性。 
6.8 维护检修 
6.8.1 当汽机房运转层采用大平台布置时,运转层的检修面积已能够满足汽轮机本体的检修需要,因此,一般仅需在每两台机组之间设置一个零米检修现场,其大小可按大件吊装及汽轮机翻缸需要考虑。 
6.8.2 本条规定有如下好处: 
1 在检修时,增加了桥式起重机的灵活性; 
2 在安装时有可能用两台起重量相同的桥式起重机起吊发电机静子; 
3 发电厂扩建时,可避免安装与检修的矛盾,不要再增加一台专为安装用的桥式起重机。 
对100MW及以下的供热机组,可装设第二台桥式起重机的机组台数,根据工程机组具体情况而定,可以多于四台。 
6.8.4 第3款:对于670t/h锅炉,条文中提到的“当相邻两台锅炉相隔较远”或“较近”,系指该两台炉的平台之间的距离大小,当汽轮机纵向布置时,该距离较大,电梯到锅炉的步道平台布置比较困难,投资费用增加,因此宜一台炉安装一台电梯。反之,当汽轮机横向布置时,相邻两台炉相隔较近,可以两台炉安装一台电梯。 
6.8.5 第4款:对于厂房内在不便设置固定维护检修平台和固定起吊设施的地方,移动升降设施解决不了所有的问题,但对于那些重量较小、布置不太高的小型设备或部件的检修起吊还是适用的。 
第5款:露天布置的设备不一定要用固定式起吊设施,因此“可根据周围的条件设置移动式或固定式起吊设施”。如露天布置的吸风机,可以采用移动式吊车起吊,也可利用周围烟道支架设置固定式起吊设施。由于今后电厂检修多外包给检修公司,电厂配备的检修设备应与这一改革相适应。例如:对于是否配置炉内检修装置,工程中常有争议,根据这一精神,本次未推荐增设。 
6.8.6 第1款:本款规定“在锅炉房内,应设置将物体从零米提升至炉顶平台的电动起吊装置和起吊孔”,需要起吊至炉顶或锅炉各层平台的材料和部件,主要是保温材料及锅炉本体的阀门等。这些阀门一般采用焊接式结构,检修时不需要将整只阀门割下进行检修,只需检修阀芯及密封面,而阀芯重量不超过3t,故本款规定起吊装置的“起重量宜为1t~3t”。 
6.9 综 合 设 施 要 求 
6.9.1 明确“大容量机组的汽机房不宜设置全地下室”,因为设置地下室的土方和混凝土工程量大,基建投资大,在地下水位较高的地区做防水处理较困难。 
6.9.3 本条规定“应避免设置大面积玻璃窗”,因为玻璃窗的面积过大,不但使基建投资增加,而且厂房的散热损失也增大,不利于采暖和节能,并增加了擦窗的难度,不利于文明生产。 
6.9.4 当变压器发生火灾爆炸时,油应排入其下部的贮油坑,并流入总事故贮油池,这样可减少火灾持续时间。总事故贮油池应有油水分离设施,以防止大量的事故排油流入下水道而污染环境。 
6.9.5 第2款:规定了对是否另设置疏散楼梯按国家防火规范确定的原则。 
第4款:空冷机组的空冷凝汽器,装在汽机房外的循环水泵和水轮机,以及空冷塔内的散热器等,都和汽轮机运行有密切的联系,所以要求在A列柱处应有通向室外的出入口,便于运行人员维护。 
6.9.6 对采用单元式布置的大容量机组,机组之间的横向联系较少,而主要是机组自身的炉、机、电之间的联系。因此,其主厂房的主体结构亦宜按单元划分。 
主厂房纵向收缩缝的设置,应按建筑物长度而定,宜布置在两单元机组之间,以简化结构处理。 
7 运煤系统 
7.1 一般规定 
7.1.1 在保证安全可靠的前提下,输煤系统宜按分期建设考虑,以节省投资。若根据建厂条件经过技术经济综合比较,认为一次建成更合理,也可考虑一次建成。 
7.2 卸煤装置 
7.2.1 为了便于确定卸煤沟(槽)的长度,在条文中对整列车的含义统一规定按50辆考虑。 
7.2.2 底开车的备用量不宜小于15%,一般不大于20%。 
7.2.5 近年来,车辆平均载重为60t,随着翻车机的可靠性和自动化水平的提高,其平均综合出力可达25辆/h,而机组年利用小时数也调为6000h以下,日利用小时数调为20h。在此条件下,当耗煤量为350t/h时,年翻卸量仅为2.1×106t,此时翻车机的平均利用率还不到25%,日最大利用率也仅为30%左右,显然尚有潜力可挖。故本条文不再强调,当耗煤量超过350t/h时,应设置两台翻车机。 
近年来,多数发电厂的来煤车辆中含有不能翻卸的异型车辆比例已很少,因此,规定一般情况下,宜结合空车清扫在空车线一侧做50m左右的地面硬化处理,只有当个别电厂异型车比例较大时,才可设置相应的卸车设施。 
7.2.6 严寒地区的发电厂,煤车发生冻结主要与煤的开采方式及其表面水分、环境温度以及煤车受冻时间等因素有关。东北电力设计院编制的《解冻设施的设置条件及其设置要求》专题报告认为,只有当煤的表面水分达到6%以上、运距超过500km、电厂及供煤地区冬季气温在-15℃以下时,煤车冻结才较为严重,冻层厚度一般在300mm~500mm左右,此时煤车必须经过解冻方能实行机械化卸煤。 
解冻设施属于季节性使用设施,投资和运行费用高,利用率低,解冻方式也有待进一步探索,不少发电厂的解冻库由于效果欠佳现已另做它用。故本条文规定,当有必要设置解冻设施时,应提出专题报告进行论证。 
7.2.7 根据近几年水运来煤发电厂大型码头卸船机械的使用经验,采用桥式抓斗绳索牵引式卸船机,不仅适合卸粒度不均匀的原煤,而且还可以显著地降低码头设备和基建投资,比较符合国情,故本条文对码头机械提出了推荐性建议,同时对采用连续式卸船机和自卸船工艺系统做了原则性规定。 
7.2.8 当在斗轮式和抓斗式煤场的煤堆上进行卸车作业时,煤堆被进出的车辆和人员压实,致使斗轮和抓斗取料困难。因此,不宜采用在斗轮式和抓斗式煤场的煤堆上卸车的作业方式。由于部分燃煤采用公路运输,分流了铁路运煤量,故铁路卸煤设施应考虑适当减小。
1 根据国内电厂的运行经验,当发电厂的小部分燃煤采用汽车运输时(年来煤量小于3×105t),若以自卸汽车为主,则受煤站不考虑设机械卸车装置;若以载重汽车为主,则受煤站内宜设置简易卸车机械(如将轮胎式或履带式装载机的工作装置改装成为长行程的工作装置而成的简易卸车机械);此时,受煤站的输出宜与煤场共用,其出力与主系统出力相匹配; 
2 根据调查,汽车年来煤量在3×105t~6×105t时,采用多个受煤斗串联布置或浅短缝式煤槽布置方式比较合适,但是应合理确定受煤斗的个数或浅缝式煤槽的长度,以节约投资。 
当燃煤以载重汽车为主运输时,受煤站所用的卸车机械可采用摘钩台式卸车机(又称液压汽车翻车台)或地面移动式汽车卸车机(由轮胎式或履带式装载机改装而成)等设备,有条件时亦可考虑采用桥式汽车卸车机。 
3 根据调查,发电厂汽车年来煤量在6×105t及以上时,汽车来煤的受卸多采用缝式煤槽卸煤装置,由于缝式煤槽卸煤装置具有适应车型范围宽、卸煤量大、具有缓冲功能等特点,因此,比较适合汽车年来煤量较大的电厂。 
7.3 带式输送机系统
7.3.1 根据近年来各新建工程的实际情况和各设计部门的设计经验,将每路带式输送机的出力下限规定为不应小于全厂锅炉最大连续蒸发量时总耗煤量的150%。对于利用原系统进行扩建的发电厂,每路带式输送机的出力不应小于135%。 
7.3.4 工程设计中应按GB50229《火力发电厂与变电所设计防火规范》中有关规定执行。

上一页  [1] [2] [3] [4] 

责任编辑:sealion1986

文章搜索:
 相关文章
热点资讯
热门课程培训