新扩建电厂设计规程(十六)
来源:优易学  2011-12-26 11:19:55   【优易学:中国教育考试门户网】   资料下载   建筑书店

7.4 贮煤场及其设备 
7.4.1 具体说明如下: 
1 根据调查,经过国家铁路干线或者水路来煤的发电厂,依建厂条件不同,贮煤场设计容量一般为全厂15d~30d的耗煤量,均能满足要求。对于铁路来煤的发电厂,因受气象条件等客观因素影响来煤连续中断天数一般不超过7d,而春节期间来煤不稳定持续时间约为15d左右,平时则基本能按计划来煤;对于水路来煤的发电厂,受气象条件影响较大:如大雾、寒潮、冰冻、台风等,影响来煤受阻的内河航运为3d~5d,海运为5d~10d。故将贮煤场设计容量下限确定为15d是合理的。 
2 大容量机组发电厂,贮煤场容量宜留有适当裕度,宜为全厂20d的耗煤量。 
3 对于建在地形复杂、场地条件较困难地区的发电厂,可按工程情况取全厂10d~15d的耗煤量,小于此值应做论证;老厂改扩建占地条件较困难的发电厂可根据实际情况论证确定贮煤场容量。 
4 对褐煤煤场,由于存损大、易自燃等原因,故不宜大于全厂10d耗煤量,在无防止自燃有效措施的情况下,最大不超过全厂15d耗煤量。 
5 根据广东省电力设计研究院编制的《干煤棚设置、结构形式和贮存容量调研报告》,上海、广东、华中地区约十多个电厂设置的干煤棚贮存干煤的天数多为3d~6.6d,已能够满足电厂安全运行,故将干煤棚容量的下限确定为3d的耗煤量。 
7.4.5 关于筒仓的防火措施见GB50229《火力发电厂与变电所设计防火规范》中的有关规定。 
作为贮煤设施,露天煤场或封闭煤棚与筒仓相比,具有安全可靠性高、投资省等优点,故将贮煤筒仓的设置条件界定为城市供热电厂或环保要求较高的地区。根据已投产的石景山热电厂、郑州热电厂等电厂的运行经验,贮煤筒仓的总容量按全厂7d的耗煤量考虑能够满足生产需求。对超过这个天数的贮煤筒仓,应进行充分论证。 
7.7 控制方式 
7.7.1 PLC可编程序控制器在火力发电厂运煤系统中的应用已有十多年的历史,实践证明这种控制方式可靠性较高,同时也达到了减人增效的目的,故新建发电厂的运煤系统应结合全厂总体控制水平和运煤系统的复杂程度,宜优先考虑采用程序控制。 
7.8 运煤辅助设施 
7.8.1 根据调查,近几年电厂用煤品质较以前有所提高,煤中“三块”含量有所下降。另外,一般在原煤进入运煤系统入口处,如缝式煤槽、翻车机受煤斗、卸船机受煤斗等均设有煤篦子,对大块煤、大石块均有限制作用。因此,是否需要设置“三块”处理设施,应根据煤种条件、系统设备配置情况确定。 
7.8.2 对于水路来煤的发电厂,来煤量基本以水测为准,目前尚无法实现以岸上电子皮带秤的计量结果作为结算依据,故本条文不强调必须采用实物校验装置。对于铁路来煤采用的轨道衡、公路来煤采用的汽车衡,国家计量部门要定期校验,故可不设实物校验装置。 
原电力工业部曾规定,已运行的300MW机组与新设计或新建的300MW及以上火电机组,必须配备按入炉煤正平衡计算煤耗所需的全部装置,包括燃煤计量装置、机械采制样装置、煤位计和实物校验装置等。但是,根据调查大多数装有实物校验装置的发电厂,并没有实现按入炉煤正平衡计算煤耗的目标,有些电厂还因工艺设计不合理、设备质量差或者管理不善等原因,造成设备长期闲置不用。另外,入炉煤的计量只用于电厂内部的管理,其精度等级要求可低一些。因此本条文仅规定了应有的校验手段。 
7.8.3 目前,多数水路来煤的发电厂可以通过在岸上的带式输送机的中部或端部设置机械采制样设备,实现入厂煤的机械化采样;陆路来煤的发电厂,由于来煤质量差异较大,近期对已安装火车或汽车机械采样装置还需要在商业运行中做进一步考验,因此,在目前条件下,普遍实现机械化采样尚有困难,故本条文规定“有条件时,宜设置入厂煤机械采样装置”。 
8 锅炉设备及系统 
8.1 锅炉设备 
8.1.1 条文具体说明如下: 
1 条文要求锅炉型式必须适应燃用煤种的煤质特性。还须适应“现行规定中的煤质允许变化范围”这一内容,这也是《燃煤电站锅炉技术条件》、《进口大容量火力发电设备技术指南》(简称《谈判指南》)及原电力工业部1993年颁布的《加强大型燃煤锅炉燃烧管理的若干规定》等现行规定中,对锅炉选型、设计和生产所提出的要求。现行规定中的煤质允许变化范围,系指实用煤质与设计煤质的偏差或锅炉实际煤质偏离招标书(或询价书)的差值在一定范围内时,锅炉应能达到额定蒸汽参数,并能在最大连续蒸发量(BMCR)负荷下安全可靠稳定运行,其保证效率则可按修正曲线修正。 
关于煤质特性,本条文简化为常规特性和非常规特性两项,其中: 
常规特性指:煤的元素分析、煤的工业分析、煤的发热量、可磨性、灰熔点、灰成分分析、灰的比电阻等数据,这是基本的煤质特性资料。 
非常规特性指:煤的着火、燃烧和燃尽等热分析数据;煤的结渣特性,包括对结渣倾向和沾污的评估意见;煤的磨损特性数据;灰的磨损特性数据;原煤的粘附特性等数据。对低挥发分煤种,易结渣煤种,可能配用中、高速磨煤机的锅炉及磨煤机选型,应根据工作需要,取得上述有关的煤的非常规特性数据。 
对混煤,应以实测资料或可靠的经验计算方法为准,尤其对非常规特性数据,简单的采用加权平均计算方法往往可能造成与实际之间的偏差。 
2 对中间再热凝汽式机组的发电厂,宜一机配一炉,主蒸汽和再热蒸汽采用单元制系统。锅炉最大连续蒸发量(BMCR)宜与汽轮机的调节阀全开工况下的进汽量相匹配。若机组允许超压,则宜与汽轮机调节阀全开且超压工况下的进汽量相匹配。当上述进汽量由于汽机制造厂标准化的原因使裕度过大时,可不要求锅炉随之加大。由于锅炉在最大连续蒸发量下可连续运行,故可不计入调节裕度,仅需计入制造厂设计和制造误差以及运行老化对汽耗的影响,根据多年来的裕度水平和锅炉进口谈判经验要求,不小于TMCR进汽量的103%。 
3 对中间再热供热式机组的发电厂,主蒸汽和再热蒸汽采用单元制系统,当一台锅炉停用时,应满足8.1.1第三款,即对非中间再热供热式机组的要求,发电厂对外供热能力下降较多,需依靠同一热网其他热源解决热负荷平衡问题,故选择装机方案时,应连同当地热网其他热源供热能力一并考虑。 
8.1.2 将主蒸汽管道的温降定为3℃~ 5℃,再热热段管道的温降修订为不低于2℃,这是因为机炉间蒸汽管道的温降主要是由压降引起的等焓温降,其次才是散热引起的温降,根据理论分析结果,因散热引起的管道温降不到0.5℃。而由压降引起的等焓温降在高压区较大,低压区较小,当主蒸汽管道压降为5%时的等焓温降对超高压、亚临界和超临界参数机组分别为2.2℃、3.2℃和4.5℃,故对超临界参数机组的主蒸汽温降取为5℃。而再热热段管道压降3.5%时的等焓温降则不到1℃,故对再热蒸汽管道温降取为2℃,这在国外供货机组上已有成功的先例。 
8.1.3 为提高锅炉燃烧管理的自动化水平,防止锅炉爆炸,220t/h及以上容量的锅炉都应设置锅炉炉膛安全监控系统,锅炉及其燃烧、制粉系统与设备都应能满足此控制要求。

[1] [2] [3] [4] 下一页

责任编辑:sealion1986

文章搜索:
 相关文章
热点资讯
热门课程培训