4 横向刚度 控制桥梁设计的要素除结构本身的强度和稳定性需要外,横向刚度控制值的选取,在一定程度上决定了桥梁设计的经济性。像本桥这种高墩、大跨度结构尤其如此。其横向刚度及动力性能是本桥设计中重点关心的问题。横向刚度用什么指标控制,国内尚无统一标准。根据铁道部有关文件规定,本桥在设计时,采用横向自振周期控制,同时检算墩顶位移和跨中横向位移,并进行车桥动力分析。在横向刚度计算中考虑了主桥墩、梁的共同作用。6号、9号、10号墩基础为桩基础,考虑桩土的相互作用,按照刚度等效的原则,将群桩基础等代转换为同等作用效果的门式刚架,采用空间杆系有限元法计算主桥墩、梁整体自振特性,本桥横向第Ⅰ振型自振周期T1=1.553s<[T1]=1.70s;主墩墩顶最大位移Δ=34.2mm<0.8(5Lp);跨中最大水平位移Δ=25mm<LP/4000。横向刚度问题的实质是车桥共同作用的动力问题,本桥采用国内外车辆部门有关列车走行安全性和平稳性评估标准,对车桥时变系统进行空间动力分析。采用客车以120km/h、140km/h的速度,货车以80km/h的速度过桥3种工况进行计算分析。列车最大脱轨系数为0.51;最大轮重减载率为0.48;列车心盘最大横、竖向加速度分别为0.241g、0.154g;最大横、竖向斯佩林舒适度指标为3.31;车桥系统最大振动响应在规定的行车安全、平稳的控制指标以内。虽然本桥宽跨比1/20.8<1/20,经计算分析本桥仍具有足够的横向及竖向刚度,列车走行具有良好的安全性和舒适性。
5 悬臂施工检算 该桥墩高、跨度大、风大,为确保结构在施工过程中的安全,设计中对悬臂施工的各阶段特别是最大悬臂状态下可能出现的不利情况进行了检算,并对横向风力作用下梁体及桥墩的扭转强度和稳定性进行了检算。施工阶段最不利状态所受荷载按如下几种情况考虑:(1)一侧达到最大悬臂,灌筑最后一节梁段混凝土,并计入冲击系数,另一侧滞后一个梁段;(2)考虑施工尺寸误差、梁重的变异性,超前一侧梁段自重增大5%;(3)滞后一侧挂篮突然坠落,冲击系数2.0;(4)超前一侧作用向下风力;(5)横向风力最不利状态:最大悬臂一侧有风力,另一侧无风力。临时支座是悬臂施工的重要结构,要承受施工中产生的不平衡弯矩,同时也要便于拆除。按以上几种工况进行设计计算,充分保障施工安全顺利进行。
6 抗震分析 对于连续结构桥梁的抗震计算,目前规范还没有具体的规定。结合花土坡特大桥工程进行了高墩大跨连续梁的抗震分析研究。用转动弹簧模拟地基的约束,根据桥址处的地质情况,按Ⅱ类场地土进行反应谱分析。以最高墩(8号墩)为例。可知,地震烈度为7、8度时,按抗震规范所计算的桥墩截面混凝土和钢筋应力均未超出允许值,从现行抗震规范的计算方法来看,花土坡特大桥的设计是安全的。
7 结 语 花土坡特大桥地质条件复杂,集高墩、大跨于一体,是西南山区铁路桥梁的典型代表。该桥在具有足够的横向刚度的前提下,突破了宽跨比1/20的限制。通过本桥的设计,为今后高墩、大跨度铁路预应力结构的设计提供了有益的经验。该桥已于2000年8月建成,并于2001年11月进行了静动载试验,实测各项指标均在规范要求以内。该桥承载力具有足够的安全储备,动力性能良好
责任编辑:xiaohan